Crystallization behavior upon heating and cooling in Cu50Zr50 metallic glass thin films

نویسندگان

  • Dongwoo Lee
  • Bingge Zhao
  • Eric Perim
  • Haitao Zhang
  • Pan Gong
  • Yulai Gao
  • Yanhui Liu
  • Cormac Toher
  • Stefano Curtarolo
  • Jan Schroers
  • Joost J. Vlassak
چکیده

We have investigated the crystallization kinetics of Cu50Zr50 metallic glass thin films using nanocalorimetry. The crystallization process is growth-controlled during heating and nucleation-controlled during cooling, resulting in different critical heating and cooling rates to suppress crystallization. Measurements over a wide range of scanning rates (13 K/s to 21,000 K/s) reveal that crystallization does not follow Arrhenius kinetics upon heating. Instead, the behavior on heating is well described by a fragilitybased model of growth-controlled kinetics that takes into account breakdown of the Stokes-Einstein relationship. Upon cooling, the quench rate required to suppress crystallization of the melt is much higher than for bulk samples. This reduced asymmetry in critical heating and cooling rates compared to bulk materials suggests that crystallization of the thin-film metallic glass is controlled by heterogeneous nucleation. © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid

The crystallization behavior of the supercooled bulk metallic glass-forming Zr41Ti14Cu12Ni10Be23 liquid was studied with different heating and cooling rates. A rate of about 1 K/s is sufficient to suppress crystallization of the melt upon cooling from the equilibrium liquid. Upon heating, in contrast, a rate of about 200 K/s is necessary to avoid crystallization. The difference between the crit...

متن کامل

Asymmetric crystallization during cooling and heating in model glass-forming systems.

We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials. For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature Tl and cooled each sample to zero temperature at rate Rc. For the heating protocol, we fi...

متن کامل

Production and Crystallization Behavior of an Iron Rich Glass–Ceramic Prepared by Ironmaking and Steelmaking Wastes

Using wastes as starting raw materials is a common method to reduce the production costs and the environmental pollution problems arising from such wastes. In this study the production and crystallization behavior of an iron rich glass prepared by iron and steel making wastes has been investigated. The raw materials used, were the blast furnace slag, the blast furnace dust, converter slag and s...

متن کامل

Phase Separation and Crystallization in Cu-Zr Metallic Glasses

The structural behavior of rapidly quenched Cu-Zr amorphous alloys was analyzed. High energy X-ray diffraction patterns and atomic pair correlation functions exhibit monotonic changes with composition. The experimental results can be well described by a solid solution-like replacement of Cu and Zr atoms in the whole composition range. No indications are observed that would support the existence...

متن کامل

OPTICAL PROPERTIES OF THIN Cu FILMS AS A FUNCTION OF SUBSTRATE TEMPERATURE

Copper films (250 nm) deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometery (single wavelength of 589.3 nm) and spectrophotometery in the spectral range of 200–2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu films to obtain the optical constants of the films, while ellipsometery measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016